
So�ware Development (cs2500)

Lecture 24: Creating Classes from Other Classes

M.R.C. van Dongen

November 29, 2010

Contents
1 Introduction 1

2 ChairWars Revisited 2
2.1 Introduction . 2

2.2 Brad Explains . 2

3 Inheritance 3
3.1 Introduction . 3

3.2 Case Study . 4

3.3 �e Class Diagram . 5

4 �e Fota Challenge 6
4.1 �e Challenge . 6

4.2 Larry Presents his Solution . 7

4.3 Brad Presents his Solution . 9

4.4 Collecting the Prize . 11

5 ForWednesday 11

1 Introduction
�is lecture is about inheritance. Inheritance lets you share common code. �e common code is written

in a common superclass. �e common superclass implements common behaviour. Subclasses inherit

common behaviour from their superclass. We shall carry out two case studies.

1

2 ChairWars Revisited

2.1 Introduction
Remember Larry and Brad? Brad’s �nal solution had �ve classes:

• One Shape superclass for default, common Shape behaviour.

• A separate class Square, Circle, Rectangle, and Amoeba for each di�erent shape.

• All these four classes were subclasses of Shape.

• All inherited default behaviour from Shape.

• �e Amoeba class overrode behaviour for playSound, and rotate.

• By overriding these methods, Amoeba objects could do things in a di�erent way.

Larry thought Brad’s �nal class had lots of duplicated code: Larry thought that all subclasses had the same

code for playSound and rotate. Of course code duplication is any so�ware engineer’s worst nightmare.

If you start duplicating code then you end up with lots of almost similar copies. If global changes are

required then you have to make a change for each copy. �is has several disadvantages.

• As a result of this you lose time.

• For each �le you edit, you can make errors. Clearly, making a change to one class �le is less prone

to errors than making the same change to several class �les.

But then Brad explained his design.

2.2 Brad Explains
Figure 1 depicts Brad’s �nal design. Brad had one superclass called Shape and four subclasses called

Square, Circle, Triangle, and Amoeba. His superclass Shape class de�nes two methods called rotate
and playSound. His subclasses also de�ne these method. Brad thought that this was all copied and pasted

into the subclass �les. (Of course he hadn’t a clue about oo design.)

In reality, Brad’s subclasses Square, Circle, and Triangle inherited the behaviour of the methods

rotate and playSound from the superclass Shape. �e nice thing about Java inheritance is that it works

without code duplication. What is more, it works without the need to write any code for the methods

inside the subclasses.

Brad’s Amoeba class worked di�erently. It also was a subclass of the Shape superclass but here the

subclass overrode the de�nitions for the methods rotate and playSound. �is was done by just writing

down new de�nitions for rotate and playSound. By providing these new de�nition Brad provided more

speci�c behaviour for these methods in the Amoeba class. All this was done without touching existing

code.

2

Square

//rotate()

//playSound()

Circle

//rotate()

//playSound()

Triangle

//rotate()

//playSound()

Amoeba

rotate()

playSound()

Shape

rotate()

playSound()

Figure 1: Brad’s �nal class design.

3 Inheritance

3.1 Introduction
�is section explains the basic ideas behind inheritance. By the end of this section you should understand

enough about inheritance to start using it in Java.

�ere are two main advantages of inheritance:

• Inheritance increases the ability to reuse implementation e�ort.

• Inheritance separates class-speci�c code from more general code. As we saw in Lecture 6 this

allowed Brad to make local changes in a class without a�ecting code in other classes.

Code is structured in classes so as to maximise code reuse. Common code is put in a common, more
abstract class. �e common, more abstract class is called the superclass. �e code in the superclass is shared

by subclasses. �e subclasses are more speci�c. �e functionality which is provided by the superclass is

also provided by the subclasses.
1

So if the superclass has a method then so does the subclass. Here, the

subclass is said to inherit the method from its superclass.

However, the subclass functionality may be more speci�c. For example, the subclass may implement

a method in a di�erent way. When this happens, the subclass is said to override the behaviour from its

superclass. A subclass may also have additional behaviour which is not provided by its superclass. Again,

this means that the subclass is more speci�c. Because a subclass is more speci�c than its superclass, the

subclass is said to extend its superclass. (�e functionality is extended.)

1
Here functionality is used in an informal way. We really mean methods and attributes.

3

3.2 Case Study
�e following example is instructive. Let’s suppose we have a Surgeon and a GP class. Let’s also suppose

we have a Doctor class. Both Surgeons and GPs are Doctors: they are more speci�c.

• A Surgeon is-a Doctor.

• A GP is-a Doctor.

• So the Surgeon and GP classes extend the Doctor class.

Both Surgeons and GPs have a method called treatPatient(). Any Doctor has it. Both have a property

worksAtHospital (a boolean). Any Doctor has it. For a Surgeon it is true. For a GP it is false. For sake

of the example, we shall assume that worksAtHospital is a public instance variable.
2

�e following is where Surgeons and GPs di�er from Doctors in general:

Surgeon: �e following is Surgeon-speci�c behaviour:

• A Surgeon has an additional makeIncision() method. �is is special behaviour which is

not provided by all Doctors.

• A Surgeon has a special implementation for treatPatient(). �is special implementation

overrides the default treatPatient() implementation in the Doctor class.

GP: �e following is GP-speci�c behaviour:

• A GP has a boolean instance variable called makesHouseCalls. To simplify this example, we

shall assume that makesHouseCalls is a public instance variable.

• A GP has an additional method giveAdvice().

We put the more general code in the Doctor class. �is is the code which any Doctor should provide:

Surgeons and GPs in particular.

public class Doctor {
public boolean worksAtHospital;

public void treatPatient() {
// Default patient treatment.

}

public void chargePatient() {
// Let’s face it, they all do.

}
}

Java

As a little joke, we also add a method called chargePatient, which should be provided by any Doctor.

We put the more speci�c code in the classes that extend the Docter class: the Surgeon and GP classes.

�e following is the code for the Surgeon class.

2
But remember that this is poor practice.

4

public class Surgeon extends Doctor {
public Surgeon() {

worksAtHospital = true;
}

@Override
public void treatPatient() {

// Specific patient treatment.
}

public void makeIncision() {
// Additional behaviour.

}
}

Java

�e keyword extends is new. It does just what is says on the tin: it states that the Surgeon class extends
the Doctor class. Using this keyword tells Java that the Surgeon class is a subclass of the Doctor class.

We’ve already seen the ‘@Override’ annotation. It is used to make explicit which methods are overrid-

den. For example, we’ve been using the notation from Day 1 each time we overrode the method toString
(we’ve been exploiting inheritance without realising it). Getting back to the example, overriding the

method treatPatient tells Java that the new implementation of the method treatPatient overrides
the default treatPatient behaviour from the Doctor class, which is the superclass of the Surgeon class.

Notice that the Surgeon class does not have a declaration for worksAtHospital: it inherits the attribute

from the Doctor (super)class.

�e following is the code for the GP. Notice that the GP class does not have a declaration for treat-
Patient because it inherits the default implementation of this method from its superclass, the Doctor
class.

public class GP extends Doctor {
public boolean makesHouseCalls;

public GP(boolean makesHouseCalls) {
worksAtHospital = false;
this.makesHouseCalls = makesHouseCalls;

}

public void giveAdvice() {
// Additional behaviour.

}
}

Java

3.3 �eClass Diagram
Figure 2 depicts the class design of this example. �e superclass, Doctor, de�nes the common attributes

and methods. �e subclasses are Surgeon and GP. �e attributes and methods which are inherited by the

subclasses are commented out. �e GP inherits all common attributes and methods. �e Surgeon inherits

the common attribute worksAtHospital and the common method chargePatient(). It overrides the

method treatPatient(). �e Surgeon class de�nes a class-speci�c method called makeIncision().

�e GP class de�nes a class-speci�c method called giveAdvice(). In addition it de�nes a class-speci�c

attribute which is called makesHouseCalls.

5

Surgeon

// worksAtHospital

// chargePatient()

treatPatient()

makeIncision()

GP

// worksAtHospital

makesHouseCalls

// chargePatient()

// treatPatient()

giveAdvice()

Doctor

worksAtHospital

treatPatient()

chargePatient()

Figure 2: Class design of Doctor example.

4 �e Fota Challenge
�is section studies another example. �e example is about implementing an application for Fota

Wildlife Park. �e main actors in this example are Larry and Brad, who also featured in the presentation

of Lecture 6. �e following is the rough outline of this section, which is presented as a play in four acts.

Act I: �e Challenge.

Act II: Larry Presents his Solution.

Act III: Brad Presents his Solution.

Act IV: Collecting the prize.

For ease of presentation most code violates one or several coding conventions. �is does not mean this is

acceptable coding practice. �e only reason why this is done is to simplify the presentation.

4.1 �eChallenge
Fota Wildlife Park has lots of animals: a lion, a cat, a wolf, a tiger, a dog, and they’re even getting a hippo.

Each animal:

• Has a picture String;

• Has a certain kind of food: grass or meat;

• Has an integer hunger level, which corresponds to the amount of food they need per day;

6

• Eats;

• Makes noise; and

• Has a roaming behaviour.

Larry and Brad have been asked to work on this application. �e programmer with the most impressive

implementation wins a prize: �sh and chips at Lennoxes.

Since his Aeron defeat in Lecture 6, Larry has secretly been taking Java lessons with Amy, who

snatched the Aeron from Larry and Brad. He has just started learning about inheritance. He knows

inheritance is the key to solving this problem. He just knows he will beat Brad.

Brad was also delighted with this application. �is was a textbook example of an inheritance applica-

tion. He knew this can’t be too di�cult.

4.2 Larry Presents his Solution
Larry quickly identi�es the objects: the animals. Following Brad’s shape-application example, he created

an Animal class. He putall the common methods and attributes in this class. �is is what it looked like.

public class Animal {
public String picture;
public boolean eatsGrass;
public int hunger;

〈more〉
}

Java

�e rest of his class was as follows:

public Animal(String picture,
boolean eatsGrass,
int hunger) {

this.picture = picture;
this.eatsGrass = eatsGrass;
this.hunger = hunger;

}

public void eat() { // Default eating behaviour.
System.out.println("Eating " + hunger + " portions of " + food() + ".");

}
private String food() {

return (eatsGrass ? "grass" : "meat");
}
public void makeNoise() { } // Should be overridden.
public void roam() { } // Should be overridden.
public String toString() {
〈omitted〉

}

Java

Next Larry started implementing his Animal subclasses. �e following was his �rst subclass, the Hippo
class. (�e other classes were similar in design.)

7

public class Hippo extends Animal {
private static final int HIPPO_HUNGER = 10;
private static final String HIPPO_PICTURE = "hippo.jpg";

public Hippo() {
picture = HIPPO_PICTURE;
eatsGrass = true;
hunger = HIPPO_HUNGER;

}

public void roam() {
System.out.println("I’m Lazy: not roaming.");

}

public void makenoise() {
System.out.println("Grunt.");

}
}

Java

Note that the instance variables picture, eatsGrass, and hunge are not de�ned in the Hippo class

but are inherited from the Animal class.

Larry’s main class looked as follows:

import java.util.ArrayList;

public class Main {
public static void main(String[] args) {

ArrayList<Animal> animals = new ArrayList<Animal>();

animals.add(new Dog());
animals.add(new Cat());
animals.add(new Hippo());
for (Animal animal : animals) {

System.out.println("next: " + animal);
animal.roam();
animal.eat();
animal.makeNoise();

}
}

}

Java

Larry quickly tested his application and all looked �ne. Het got the following output:

$ java Main
next: Animal[picture = dog.jpg, eatsGrass = meat, hunger = 4]
Roaming in my pack.
Eating 4 portions of meat.
Arf. Arf.
next: Animal[picture = cat.jpg, eatsGrass = meat, hunger = 1]
Roaming alone.
Eating 1 portions of meat.
Mew. Mew.
next: Animal[picture = hippo.jpg, eatsGrass = grass, hunger = 10]
I’m Lazy: not roaming.
Eating 10 portions of grass.

Unix Session

Figure 3 depicts Larry’s class design in the form of a class diagram. When Larry showed his class

design and the output of his program to his boss, his boss wasn’t impressed. “�e hippo makes no noise.”

he said.

Larry couldn’t understand it. He thought he had properly overridden the method for noise making

8

Cat

// picture

// eatsGrass

// hunger

// eat()

makeNoise()

roam()

Tiger

// picture

// eatsGrass

// hunger

// eat()

makeNoise()

roam()

Lion

// picture

// eatsGrass

// hunger

// eat()

makeNoise()

roam()

Wolf

// picture

// eatsGrass

// hunger

// eat()

makeNoise()

roam()

Dog

// picture

// eatsGrass

// hunger

// eat()

makeNoise()

roam()

Hippo

// picture

// eatsGrass

// hunger

// eat()

makeNoise()

roam()

Animal

picture

eatsGrass

hunger

eat()

makeNoise()

roam()

Figure 3: Larry’s class design.

in the Hippo class. When he asked Amy at his nect Java lesson, she quickly discovered the error. �ere

was a typo in his Hippo class. Instead of makeNoise Larry had typed makenoise. Amy told him how to

prevent such errors. “All you have to do is add the ‘@Override’ annotation.” she said. Larry couldn’t stand

it. Again he had made a fool of himself.

4.3 Brad Presents his Solution
Brad had read about Lennoxes in the 2009 Edition of �e Lonely Planet. Eating there is supposed to be

a lifetime experience. He was very keen on winning this prize. Brad’s design was completely di�erent

from Larry’s design. Brad noticed that there are really three kinds of animals: Canines: animals with

dog-like behaviour; Felines: animals with cat-like behaviour; and Others: animals with other behaviour.

He decided to build this in to his class design.

Brad’s Animal class was identical to Larry’s. However, Brad created two more classes: Canine and

Feline. Both classes extend the Animal class. �e reason why Brad introduced these classes is really neat.

His reasoning was as follows. All Canines eat meat. In addition, all Canines roam in packs. All this is

common dog-like behaviour and should be shared for all Canine animals: Dog and Wolf objects. �e

following shows Brad’s implementation of the Canine class. Being a seasoned Java programmer Brad

didn’t forget the ‘@Override’ annotation before the method roam, which is overridden by the Canine
class.

9

public class Canine extends Animal {
public Canine() { eatsGrass = false;}

@Override
public void roam() { System.out.println("Roaming in my pack."); }

}

Java

Brad’s Feline class was similar. All Felines eat meat. In addition, all Felines roam alone. �is is

common cat-like behaviour which should be shared by all Felines: Cats, Tigers, and Lions. �e following

is Brad’s Feline class.

public class Feline extends Animal {
public Feline() { eatsGrass = false;}

@Override
public void roam() { System.out.println("Roaming alone.");}

}

Java

Brad’s design is really clever. His design factors out all common Canine behaviour. As a result his Dog
and Wolf classes have become very simple.

• All Canines inherit the roaming behaviour, which is now only implemented once. �is is a much

better solution than that of Larry, who implemented the same roaming method for his Dog and

Wolf class by duplicating code.

• By default, eatsGrass is false for all Canines. As a consequence there is no need to initialise

eatsGrass in the Dog and Wolf classes. Compared to Larry, who initialised eatsGrass for his Dog
class and his Wolf class by duplicating code, Brad has come up with a better solution.

�e following is Brad’s Dog class. It’s really simple.

public class Dog extends Canine {
private static final int DOG_HUNGER = 4;
private static final String DOG_PICTURE = "dog.jpg";
public Dog() {

picture = DOG_PICTURE;
// eatsGrass is false by default.
hunger = DOG_HUNGER;

}
// Inherits eating behaviour from Aninmal class.
// Inherits roaming behaviour from Canine class.
@Override
public void makeNoise() { System.out.println("Arf. Arf."); }

}

Java

�e Dog class is a subclass of the Canine class: a Dog is-a Canine. �erefore, the Dog class extends the

Canine class. �is lets the Dog class inherit all default behaviour from the Canine class. (Brad’s Wolf class

is similar and is not shown.)

Brad proceeded by implementing the Cat, Tiger, and Lion classes as subclasses of the Feline class.

�e following is what his Cat class looked like. Again lots of code is shared. Notice that this time the

Cat class extends the Feline class. (Brad’s Tiger and Lion classes are similar to his Cat class and are not

shown.)

10

public class Cat extends Feline {
private static final int CAT_HUNGER = 1;
private static final String CAT_PICTURE = "cat.jpg";
public Cat() {

picture = CAT_PICTURE;
// eatsGrass is false by default.
hunger = CAT_HUNGER;

}
// Inherits eating behaviour from Aninmal class.
// Inherits roaming behaviour from Feline class.
@Override
public void makeNoise() { System.out.println("Mew. Mew."); }

}

Java

Most of Brad’s work goes into writing the Hippo class. �e main reason is that less code can be shared.

�e following is Brad’s Hippo class. Notice that it extends the Animal class.

public class Hippo extends Animal {
// 〈constants omitted〉
public Hippo() {

picture = HIPPO_PICTURE;
eatsGrass = true;
hunger = HIPPO_HUNGER;

}
// Inherits eating behaviour from Aninmal class.
@Override
public void roam() { System.out.println("I’m lazy: not roaming."); }
@Override
public void makeNoise() { System.out.println("Grunt."); }

}

Java

Figure 4 depicts Brad’s class design in the form of a class diagram. �is time — this is the norm — the

inherited attributes and methods are not listed (by writing them down and commenting them out). Note

that Brad’s design is much cleaner compared to that of Larry’s. �e only classes that override the method

roam() are Feline, Canine, and Hippo. �e subclasses of Feline and Canine inherit the method roam(
) from their (immediate) superclass. �ese subclasses only have to override the method makeNose().

All other methods and attributes are inherited from the Animal class. �e Hippo class also overrides the

method roam. Compared to Larry’s design there are fewer method overrides.

4.4 Collecting the Prize
When Brad showed his application to his boss, his boss was very impressed and sent him o� to Lennoxes

to collect his prize.

5 ForWednesday
Don’t forget to prepare for the test. For Wednesday: study the notes and Chapter 7, Pages 166–179.

11

Cat

makeNoise()

Tiger

makeNoise()

Lion

makeNoise()

Wolf

makeNoise()

Dog

makeNoise()

Feline

// eatsGrass=false

roam()

Canine

// eatsGrass=false

roam()

Animal

picture

eatsGrass

hunger

eat()

makeNoise()

roam()

Hippo

// eatsGrass=true

makeNoise()

roam()

Figure 4: Brad’s class design.

12

	Introduction
	Chair Wars Revisited
	Introduction
	Brad Explains

	Inheritance
	Introduction
	Case Study
	The Class Diagram

	The Fota Challenge
	The Challenge
	Larry Presents his Solution
	Brad Presents his Solution
	Collecting the Prize

	For Wednesday

